The generator matrix 1 0 0 0 0 1 1 1 2 0 1 1 1 0 1 1 0 2 1 1 1 1 0 2 1 2 2 2 2 1 0 1 1 0 1 1 0 2 2 2 0 1 2 1 1 1 1 1 1 1 0 2 0 1 1 1 1 1 1 0 2 1 2 0 1 0 2 0 2 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 3 0 1 2 3 1 2 2 1 1 0 0 1 1 0 2 3 1 0 1 2 1 1 2 0 1 1 0 2 1 0 1 2 1 3 1 2 1 3 1 2 1 0 3 1 1 0 1 2 1 2 2 1 1 0 0 0 1 0 0 0 1 1 1 1 3 2 0 0 3 1 1 0 2 2 2 3 0 2 3 1 1 3 1 2 1 2 3 2 2 1 1 2 1 2 3 3 2 2 2 1 1 3 3 2 2 0 2 3 3 2 0 1 1 1 2 1 2 1 1 1 0 3 1 0 0 0 0 1 0 1 1 0 3 1 2 3 0 3 0 0 2 3 0 3 2 1 1 2 1 3 2 2 1 1 2 2 0 0 1 2 3 3 1 1 2 1 0 3 3 1 3 1 1 0 2 1 3 3 3 3 0 0 2 2 3 3 1 1 0 1 1 3 2 3 0 0 0 0 1 1 0 1 1 2 2 0 3 1 0 3 3 0 3 1 2 1 1 3 2 2 0 0 1 2 1 2 1 1 0 3 3 1 1 2 1 0 1 1 2 3 1 3 2 0 1 1 0 0 0 0 3 2 2 1 0 1 0 3 0 1 0 2 0 3 0 0 0 0 0 2 0 2 0 0 2 2 2 0 2 2 0 0 2 0 2 0 0 2 0 2 0 2 2 0 2 2 0 0 0 0 2 0 0 0 0 2 2 0 2 2 0 0 0 0 2 2 0 0 2 2 0 2 2 2 2 0 0 0 2 2 2 2 2 0 0 0 0 0 0 0 2 2 2 2 2 0 0 2 2 2 2 0 0 0 0 2 0 0 2 2 2 2 2 0 0 2 0 2 2 0 0 0 0 2 0 0 2 2 2 0 2 0 0 0 2 2 2 2 2 2 0 0 0 0 2 0 0 0 0 2 0 2 2 2 generates a code of length 70 over Z4 who´s minimum homogenous weight is 60. Homogenous weight enumerator: w(x)=1x^0+72x^60+156x^61+173x^62+156x^63+228x^64+320x^65+236x^66+172x^67+256x^68+302x^69+215x^70+210x^71+213x^72+214x^73+232x^74+128x^75+164x^76+204x^77+107x^78+80x^79+67x^80+72x^81+44x^82+20x^83+20x^84+10x^85+17x^86+2x^87+3x^88+2x^89 The gray image is a code over GF(2) with n=140, k=12 and d=60. This code was found by Heurico 1.16 in 2.62 seconds.