The generator matrix 1 0 0 0 1 1 1 0 1 1 1 1 2 2 2 1 1 1 1 1 0 1 2 1 1 1 0 1 0 2 1 0 2 1 1 0 1 0 0 0 1 1 1 2 0 3 3 1 2 1 0 0 1 1 0 1 3 2 1 0 2 0 3 1 1 2 1 1 2 0 0 0 1 0 1 1 0 1 0 3 3 2 2 1 1 3 3 3 0 2 2 3 1 2 2 0 0 0 2 1 1 3 0 0 0 0 0 0 1 1 0 1 1 1 0 1 2 3 1 2 0 3 2 1 3 0 3 3 2 0 1 1 1 3 1 1 2 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 2 2 2 2 0 0 2 2 0 0 0 2 2 2 0 2 0 2 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 0 2 0 2 2 2 0 2 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 2 2 2 2 2 0 0 0 0 2 2 0 2 2 0 2 2 0 0 2 0 0 0 0 0 0 0 0 2 2 2 0 2 2 2 2 2 0 0 0 0 0 0 0 2 0 2 0 2 2 0 0 0 2 2 0 generates a code of length 35 over Z4 who´s minimum homogenous weight is 26. Homogenous weight enumerator: w(x)=1x^0+59x^26+52x^27+134x^28+200x^29+229x^30+276x^31+286x^32+310x^33+323x^34+354x^35+326x^36+358x^37+277x^38+274x^39+220x^40+146x^41+119x^42+66x^43+52x^44+10x^45+13x^46+2x^47+5x^48+3x^50+1x^54 The gray image is a code over GF(2) with n=70, k=12 and d=26. This code was found by Heurico 1.16 in 0.91 seconds.