The generator matrix 1 0 0 0 0 1 1 1 1 2 1 1 1 0 1 2 1 1 0 1 1 2 0 2 2 1 2 1 2 1 1 1 1 1 1 0 1 1 2 2 1 2 0 2 0 2 0 0 2 1 0 2 1 0 1 0 0 0 0 0 0 2 0 0 2 0 1 1 1 3 3 1 1 1 2 1 1 1 1 0 2 1 3 3 2 1 3 3 1 3 0 1 2 3 0 0 2 1 1 2 2 1 2 0 1 3 0 0 1 0 0 0 0 1 1 1 2 3 1 1 2 1 1 2 2 3 3 1 0 0 1 1 1 1 3 0 2 2 0 2 0 1 0 0 2 1 3 2 1 1 3 1 2 1 0 3 1 0 0 0 0 0 1 0 1 2 2 0 3 1 1 3 3 3 2 3 0 3 0 2 1 1 0 2 3 2 1 3 3 0 3 3 1 2 3 0 2 0 0 2 1 3 0 0 3 1 3 3 1 0 2 1 0 0 0 0 1 1 1 3 0 1 2 1 2 2 1 2 3 1 3 2 1 0 0 3 1 0 3 2 1 2 3 0 3 2 0 2 2 2 3 2 1 3 1 2 2 0 0 1 2 2 3 3 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 2 0 2 2 2 2 2 0 2 0 2 0 2 2 2 2 0 2 2 2 2 2 0 2 0 0 2 0 2 2 2 2 2 0 0 generates a code of length 53 over Z4 who´s minimum homogenous weight is 45. Homogenous weight enumerator: w(x)=1x^0+50x^45+109x^46+126x^47+156x^48+154x^49+158x^50+154x^51+136x^52+124x^53+125x^54+128x^55+106x^56+112x^57+89x^58+76x^59+56x^60+58x^61+46x^62+26x^63+21x^64+14x^65+17x^66+2x^67+4x^68 The gray image is a code over GF(2) with n=106, k=11 and d=45. This code was found by Heurico 1.16 in 0.441 seconds.