The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 0 0 0 0 8 8 8 8 0 0 8 8 0 8 8 0 0 0 0 0 8 0 8 0 8 0 8 0 8 8 8 0 0 8 0 0 8 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8 0 8 8 0 0 8 8 8 8 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 0 0 0 0 0 0 8 8 8 8 0 0 0 8 8 0 8 8 0 0 0 0 0 8 8 8 8 0 0 0 0 8 8 8 0 0 8 0 0 0 0 8 0 0 0 8 8 8 8 8 0 8 8 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 0 0 8 8 8 8 0 0 0 0 8 8 8 8 0 0 0 8 8 0 0 8 8 0 8 8 0 0 0 8 8 0 0 0 8 8 0 0 0 8 8 8 8 8 0 8 0 0 0 0 0 0 0 0 8 0 8 8 8 0 0 0 0 8 8 8 8 0 0 0 8 8 8 8 8 8 0 0 0 0 8 8 0 8 8 0 0 8 8 0 0 8 8 0 0 8 8 0 8 8 0 0 0 0 8 8 0 8 8 0 8 8 0 0 0 8 8 0 0 0 0 0 8 0 8 8 8 0 0 8 8 0 0 0 0 0 0 8 8 0 8 8 0 8 8 8 0 0 8 0 8 8 8 0 0 8 0 8 8 0 0 8 8 0 8 8 0 0 0 0 8 8 0 0 8 8 8 8 0 0 0 8 8 0 8 0 0 8 8 8 8 8 0 0 0 0 8 8 0 0 0 0 8 8 8 0 0 8 8 8 0 0 0 0 generates a code of length 82 over Z16 who´s minimum homogenous weight is 80. Homogenous weight enumerator: w(x)=1x^0+59x^80+414x^82+23x^84+12x^88+1x^100+2x^114 The gray image is a code over GF(2) with n=656, k=9 and d=320. This code was found by Heurico 1.16 in 0.307 seconds.