The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 1 1 1 1 1 1 1 1 1 2 12 2 4 2 2 1 12 0 2 8 2 1 1 1 0 12 12 2 2 12 0 12 12 1 2 2 2 1 8 1 2 1 2 2 1 2 0 12 2 2 8 0 2 0 0 0 2 14 2 4 2 10 12 12 2 14 12 8 12 12 14 4 6 10 6 10 10 10 8 14 12 4 2 0 0 12 6 4 0 10 6 2 2 12 2 12 12 6 2 2 12 2 6 10 12 14 4 2 0 6 12 2 2 2 2 6 6 14 14 14 2 4 0 12 0 8 0 8 0 2 2 8 2 0 0 2 0 2 2 2 8 10 6 14 2 8 12 12 4 14 10 8 6 8 2 8 10 12 4 6 6 0 8 2 8 12 2 2 12 14 12 2 6 10 12 14 14 14 0 2 14 4 10 14 4 6 2 10 4 4 8 10 2 10 14 12 14 14 10 12 10 0 2 14 14 14 2 2 8 10 4 6 10 6 0 0 0 0 2 2 0 10 2 8 8 14 14 6 0 14 4 12 10 14 0 0 14 4 0 8 14 10 0 12 4 10 14 10 0 14 6 10 10 6 12 6 12 12 4 14 10 2 8 12 2 0 10 8 8 10 2 2 2 6 12 10 14 0 8 8 8 4 6 10 4 0 0 12 10 4 12 8 2 2 14 0 4 0 0 0 0 4 0 4 0 0 12 0 0 4 12 4 4 4 8 8 0 4 4 4 12 8 12 0 8 8 0 12 12 8 12 12 8 12 4 0 8 8 0 8 0 12 8 4 8 4 0 12 12 8 12 0 4 0 12 4 0 12 4 4 4 12 0 12 0 8 4 0 8 4 0 4 12 8 12 12 4 12 8 0 0 0 0 0 8 0 0 8 0 8 8 8 8 8 8 0 8 0 8 8 0 8 0 0 8 8 8 0 0 0 0 8 8 8 8 8 0 0 0 0 8 0 0 8 8 8 8 0 0 8 0 0 0 0 8 0 0 8 0 0 8 0 8 0 0 0 0 8 0 0 8 8 0 0 8 0 8 0 8 0 8 generates a code of length 82 over Z16 who´s minimum homogenous weight is 72. Homogenous weight enumerator: w(x)=1x^0+191x^72+492x^73+845x^74+1396x^75+2101x^76+2720x^77+3663x^78+5002x^79+6087x^80+6882x^81+7111x^82+6818x^83+6041x^84+4896x^85+3866x^86+2696x^87+1730x^88+1278x^89+711x^90+436x^91+306x^92+102x^93+82x^94+30x^95+15x^96+12x^97+9x^98+6x^99+8x^100+2x^101+1x^110 The gray image is a code over GF(2) with n=656, k=16 and d=288. This code was found by Heurico 1.16 in 95.7 seconds.