The generator matrix 1 0 0 1 1 1 10 2 1 4 1 1 1 10 1 4 1 4 1 14 1 10 1 4 1 1 1 1 1 2 10 1 8 1 1 0 4 1 1 1 1 6 2 4 2 1 1 1 8 1 2 1 2 1 14 1 1 4 1 1 12 1 8 12 1 1 14 6 1 4 1 8 1 1 1 12 1 1 1 1 1 1 4 2 8 1 1 14 10 1 10 1 1 6 1 1 1 2 1 0 1 0 0 5 13 1 6 2 1 15 15 6 1 7 6 0 1 13 1 14 8 8 1 1 15 14 1 3 1 6 12 1 0 3 6 1 6 13 12 14 1 1 8 1 9 12 11 1 14 1 0 0 7 1 10 11 1 4 11 14 12 4 1 6 5 4 1 15 1 15 1 9 11 4 1 13 2 9 15 6 2 1 1 1 2 8 1 10 8 2 10 14 1 5 9 11 1 0 0 0 1 11 7 4 7 1 5 5 6 11 0 8 12 1 1 2 13 5 14 1 14 3 14 7 15 12 8 2 1 14 12 5 5 1 5 8 9 3 7 1 8 1 7 11 6 10 2 10 2 7 1 13 15 12 14 7 1 1 1 12 1 7 9 10 1 14 4 6 15 11 12 13 2 2 10 4 3 15 1 14 9 11 12 14 15 15 1 1 1 13 10 1 15 4 3 7 12 0 0 0 12 4 0 4 12 12 4 0 4 8 8 8 12 12 0 12 4 8 4 8 12 0 4 12 8 0 8 12 0 0 4 8 0 8 12 0 0 0 8 12 8 0 8 12 4 4 12 4 8 0 0 8 4 12 4 0 0 12 4 4 0 8 8 12 4 4 8 8 8 12 4 4 12 0 0 0 8 12 12 0 0 4 8 0 12 4 12 0 8 4 12 0 12 12 0 12 0 0 0 0 8 0 8 8 8 0 8 0 8 8 8 0 8 0 0 8 8 8 0 0 0 8 0 0 8 0 0 8 8 0 0 8 8 0 8 0 0 0 0 0 8 8 8 0 8 8 0 8 8 8 8 0 8 0 8 0 8 8 8 0 0 8 0 8 0 8 8 8 0 8 0 0 8 0 8 0 0 0 0 0 8 0 8 0 0 0 0 8 8 0 0 8 8 0 8 generates a code of length 99 over Z16 who´s minimum homogenous weight is 92. Homogenous weight enumerator: w(x)=1x^0+360x^92+940x^93+1902x^94+2176x^95+3036x^96+3208x^97+3548x^98+3536x^99+3499x^100+2912x^101+2630x^102+1608x^103+1443x^104+832x^105+454x^106+308x^107+149x^108+68x^109+64x^110+16x^111+32x^112+8x^113+22x^114+4x^115+8x^116+4x^118 The gray image is a code over GF(2) with n=792, k=15 and d=368. This code was found by Heurico 1.16 in 18.5 seconds.