The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 8 2 0 2 2 0 1 2 1 1 2 12 1 8 2 1 1 2 1 4 8 1 1 2 1 2 4 2 1 2 1 0 2 1 1 1 1 12 2 1 1 2 1 2 1 2 1 12 1 0 2 0 0 0 2 6 14 0 8 0 2 6 12 14 2 8 14 14 4 12 6 10 12 10 0 8 6 8 8 2 6 12 14 12 2 2 8 2 4 4 4 8 2 4 8 2 6 12 2 14 10 14 4 2 2 14 8 10 2 6 0 2 14 14 10 2 2 14 10 0 12 2 10 2 8 2 4 0 8 6 0 2 12 0 0 2 0 2 2 2 0 4 14 8 0 8 14 10 10 2 6 4 0 4 8 12 6 10 4 4 8 14 14 14 10 10 12 14 2 0 2 14 0 0 10 0 2 4 6 8 6 2 6 10 10 4 4 8 14 14 10 14 4 8 2 10 14 8 0 8 14 10 4 6 2 10 14 12 14 4 10 14 14 12 4 6 0 0 0 0 2 2 0 2 10 8 2 14 14 4 12 14 12 6 4 2 6 0 8 8 8 2 6 4 6 0 6 2 0 2 14 12 14 12 0 2 6 2 10 14 2 0 6 2 4 14 14 12 6 6 6 8 2 10 12 6 8 12 2 4 0 0 8 4 0 6 14 2 2 0 4 4 4 0 12 8 4 2 4 14 10 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8 8 8 8 8 0 8 8 0 0 8 8 8 0 0 0 8 8 8 0 0 0 8 0 8 8 8 0 0 8 0 0 0 8 8 0 8 8 0 0 8 0 0 0 8 0 8 0 8 0 0 8 0 8 8 0 0 8 0 8 0 0 0 0 0 8 0 8 8 8 8 0 8 8 8 0 8 8 8 8 8 8 0 0 0 0 0 0 8 0 8 0 8 0 0 0 0 0 8 8 0 8 8 8 8 8 8 0 0 8 8 0 0 8 0 0 0 0 0 0 8 8 0 0 8 8 8 0 8 0 0 0 0 8 0 8 8 0 0 8 8 0 0 8 generates a code of length 84 over Z16 who´s minimum homogenous weight is 75. Homogenous weight enumerator: w(x)=1x^0+126x^75+469x^76+666x^77+1132x^78+1306x^79+1831x^80+2554x^81+2999x^82+3508x^83+3747x^84+3850x^85+2899x^86+2434x^87+1765x^88+1134x^89+938x^90+472x^91+402x^92+204x^93+138x^94+84x^95+36x^96+40x^97+15x^98+6x^99+2x^100+7x^102+2x^104+1x^112 The gray image is a code over GF(2) with n=672, k=15 and d=300. This code was found by Heurico 1.16 in 25.8 seconds.