The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 8 2 2 2 12 1 0 1 2 0 1 8 8 1 2 2 1 2 1 0 2 1 1 1 1 1 12 2 12 0 1 1 0 2 4 2 1 1 1 0 1 1 4 0 2 1 1 0 1 0 1 1 0 2 0 2 0 0 2 10 8 0 6 6 4 2 2 12 0 8 12 2 10 6 14 0 8 4 6 2 8 4 2 4 10 0 14 2 2 12 10 14 2 0 2 2 2 6 6 10 2 14 12 10 2 0 12 14 12 2 4 2 2 10 8 2 4 2 6 2 12 8 0 14 14 2 4 14 4 0 2 14 4 0 0 0 0 2 2 0 6 10 8 6 4 6 12 12 12 14 2 0 10 12 8 2 12 10 10 6 0 14 12 6 12 14 2 14 6 0 12 6 2 12 4 6 4 0 4 14 10 4 12 4 8 2 2 6 4 4 12 10 10 14 4 0 14 4 6 6 4 0 10 2 0 2 4 10 10 2 6 2 12 2 4 2 4 8 0 0 0 4 0 0 4 0 0 0 12 0 0 0 4 8 4 4 12 12 8 4 8 12 12 4 8 4 12 12 0 12 4 8 4 0 0 4 12 8 0 4 12 4 12 4 8 8 0 8 0 12 12 12 8 12 0 12 8 12 8 0 4 4 0 8 12 0 12 0 8 12 8 0 12 8 4 8 4 8 8 8 12 0 0 0 0 12 0 12 4 4 4 12 4 8 0 8 12 4 8 4 8 12 0 0 4 4 8 12 4 0 8 8 12 12 8 0 12 0 0 12 8 0 4 0 4 0 8 4 0 4 12 4 4 12 8 12 4 8 0 8 8 0 4 8 0 0 0 12 12 4 0 4 0 12 4 8 4 8 8 12 0 12 0 12 0 0 0 0 0 8 0 0 8 8 8 8 8 8 8 0 0 8 8 8 0 0 8 0 8 8 8 8 0 0 0 8 0 0 0 0 0 8 0 0 8 8 8 0 8 0 8 0 0 0 8 8 0 0 0 0 0 0 8 0 8 0 8 8 0 8 0 8 0 8 8 0 0 8 0 0 8 8 8 0 8 0 8 generates a code of length 83 over Z16 who´s minimum homogenous weight is 73. Homogenous weight enumerator: w(x)=1x^0+40x^73+203x^74+404x^75+639x^76+1008x^77+1380x^78+1890x^79+2443x^80+3156x^81+3624x^82+3566x^83+3503x^84+3094x^85+2472x^86+1890x^87+1285x^88+800x^89+524x^90+318x^91+192x^92+132x^93+62x^94+52x^95+29x^96+20x^97+20x^98+8x^99+2x^100+6x^101+2x^102+2x^104+1x^106 The gray image is a code over GF(2) with n=664, k=15 and d=292. This code was found by Heurico 1.16 in 27.6 seconds.