The generator matrix 1 0 1 1 1 6 1 1 12 1 10 1 1 8 1 1 14 1 1 4 2 1 1 1 1 1 0 1 1 6 1 1 1 10 12 1 4 1 2 1 1 1 8 1 6 2 1 1 1 2 1 2 4 12 12 1 10 1 2 8 1 1 1 1 1 1 1 2 12 1 1 1 0 1 11 6 13 1 12 3 1 10 1 5 15 1 8 1 1 14 7 1 1 4 13 2 9 2 1 3 8 1 4 15 6 1 1 5 1 8 1 15 9 11 1 14 1 1 0 0 10 1 12 1 1 1 1 8 1 13 1 1 0 15 5 15 6 4 3 0 1 4 14 0 0 0 12 0 4 0 0 8 0 8 0 0 8 12 12 4 12 12 12 4 12 4 12 4 8 4 8 8 4 8 12 0 0 0 0 8 4 0 12 8 8 12 12 12 0 12 0 8 8 12 0 12 4 12 8 8 4 4 0 12 0 0 0 8 8 12 0 12 12 12 4 0 0 0 0 8 0 0 0 8 8 8 8 8 8 8 0 8 0 8 0 8 0 8 8 8 0 8 0 0 8 8 0 8 0 0 0 8 8 8 0 0 8 8 0 0 8 8 8 0 8 8 0 8 8 0 8 8 8 8 0 8 0 8 0 8 0 8 8 0 8 8 8 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 8 0 8 8 8 8 8 8 8 8 8 8 8 8 8 0 8 8 8 0 8 8 8 0 8 8 8 0 8 0 0 0 8 8 8 8 0 8 8 0 8 8 0 8 8 8 0 0 0 0 0 0 8 0 0 0 0 0 8 8 0 8 0 0 0 8 8 8 8 8 8 0 8 8 8 0 0 0 0 8 8 0 8 0 8 8 8 0 8 0 0 0 8 0 0 8 8 8 0 8 8 8 0 0 0 0 0 0 8 8 8 8 8 8 0 8 0 0 0 0 0 0 0 0 0 8 0 8 8 0 8 0 8 0 8 0 0 8 8 0 0 0 0 8 8 8 0 0 0 8 8 8 8 0 8 0 0 0 8 8 8 8 0 8 8 8 0 8 0 8 0 0 0 8 0 0 0 8 8 8 8 0 8 0 8 0 0 8 0 8 0 generates a code of length 72 over Z16 who´s minimum homogenous weight is 64. Homogenous weight enumerator: w(x)=1x^0+54x^64+156x^65+241x^66+686x^67+758x^68+1236x^69+1821x^70+2030x^71+2511x^72+2064x^73+1814x^74+1210x^75+721x^76+612x^77+184x^78+170x^79+33x^80+16x^81+17x^82+8x^84+8x^85+10x^86+9x^88+4x^89+8x^90+1x^92+1x^102 The gray image is a code over GF(2) with n=576, k=14 and d=256. This code was found by Heurico 1.16 in 4.35 seconds.