The generator matrix 1 0 1 1 1 6 1 1 12 1 10 1 8 1 1 1 1 14 2 1 1 4 1 1 4 1 1 2 1 1 12 1 1 14 1 1 1 1 0 1 1 1 1 1 6 1 1 1 1 1 1 1 4 0 1 1 1 8 12 2 1 8 2 1 8 1 1 1 2 1 0 1 11 6 13 1 12 3 1 10 1 5 1 14 7 1 8 1 1 9 4 1 15 2 1 13 4 1 15 12 1 1 14 1 11 10 5 7 1 6 8 1 11 1 1 6 4 5 7 1 0 5 1 1 7 9 9 1 1 4 11 1 10 9 1 6 7 10 1 0 0 0 12 0 4 0 0 8 0 8 0 0 4 12 4 12 4 12 4 0 4 4 8 4 12 12 12 4 8 0 8 12 4 4 4 8 8 4 0 0 12 12 12 4 0 0 12 8 0 8 8 0 4 8 12 8 8 4 0 12 12 4 4 12 0 4 8 0 4 0 0 0 0 8 0 0 0 8 8 8 8 8 8 0 0 8 0 0 8 8 8 8 0 0 0 8 8 0 0 0 8 0 8 8 8 0 0 8 0 0 8 8 0 8 8 8 0 8 8 0 8 0 8 0 0 8 0 0 0 0 8 8 8 8 0 8 0 8 0 0 0 0 0 0 8 0 0 0 0 0 0 0 8 8 8 8 8 0 0 8 8 0 8 0 8 0 8 0 0 8 8 0 0 8 8 8 0 0 8 8 8 8 8 0 8 8 0 0 8 0 8 0 0 0 8 0 8 8 8 8 0 0 8 0 0 0 8 8 0 0 0 0 0 0 0 8 0 0 0 0 0 8 0 0 0 0 8 0 0 8 8 8 0 0 8 8 8 8 8 0 8 8 8 8 0 8 8 0 8 0 0 8 8 8 0 8 8 8 8 0 8 0 0 8 8 0 0 0 0 0 8 0 0 0 8 0 8 0 0 0 0 0 0 0 0 0 8 0 8 8 0 8 0 0 8 0 8 8 0 0 8 8 0 8 0 8 0 0 8 8 0 0 8 0 8 8 0 8 8 0 8 0 0 0 0 8 8 0 0 0 0 8 0 8 8 8 0 0 8 8 0 8 8 0 0 8 0 8 0 0 generates a code of length 70 over Z16 who´s minimum homogenous weight is 62. Homogenous weight enumerator: w(x)=1x^0+34x^62+104x^63+259x^64+738x^65+698x^66+1578x^67+1307x^68+2818x^69+1626x^70+2470x^71+1310x^72+1804x^73+633x^74+566x^75+166x^76+128x^77+60x^78+18x^79+17x^80+10x^81+12x^82+7x^84+6x^85+6x^86+4x^88+1x^90+2x^94+1x^96 The gray image is a code over GF(2) with n=560, k=14 and d=248. This code was found by Heurico 1.16 in 4.18 seconds.