The generator matrix 1 0 1 1 1 6 1 12 1 1 1 10 1 1 8 1 14 1 1 1 4 1 1 2 1 1 0 1 6 1 1 1 0 6 1 1 1 1 4 2 1 1 1 4 1 1 2 1 2 4 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 12 1 1 1 12 1 14 1 1 12 0 1 11 6 5 1 9 1 12 3 10 1 15 8 1 14 1 13 7 4 1 2 1 1 0 3 1 6 1 15 13 0 1 1 2 11 1 6 1 1 4 7 4 1 9 2 1 5 6 2 5 11 15 5 15 11 9 9 13 3 15 8 5 9 5 15 11 6 6 0 0 10 10 2 0 5 12 1 10 1 5 4 2 0 0 12 0 0 8 0 8 8 8 8 0 8 4 4 12 12 4 4 4 4 12 12 12 0 8 0 0 0 8 4 4 4 4 4 12 12 12 12 12 12 4 0 0 8 0 0 8 8 12 12 8 0 8 12 4 12 4 0 4 12 4 8 12 0 0 8 0 8 12 4 8 0 12 8 4 8 8 0 12 0 4 8 0 0 0 8 0 8 8 0 8 8 0 8 0 0 8 8 0 0 8 8 8 0 8 0 0 8 8 8 0 0 0 0 0 8 0 8 8 8 0 8 8 0 8 8 0 0 0 8 8 8 8 0 0 0 8 8 0 0 0 0 0 8 8 0 8 8 0 0 0 8 8 8 8 8 8 0 0 0 8 0 8 0 8 0 0 0 0 8 8 8 8 8 0 8 0 0 0 8 0 8 8 0 8 0 8 8 0 8 8 8 8 8 8 0 8 0 8 0 8 0 8 8 0 0 8 0 0 0 0 0 0 0 8 8 8 8 0 0 0 0 0 0 8 8 8 8 8 8 0 0 8 8 8 8 8 8 8 0 8 0 0 0 0 0 0 8 generates a code of length 83 over Z16 who´s minimum homogenous weight is 78. Homogenous weight enumerator: w(x)=1x^0+158x^78+236x^79+540x^80+524x^81+491x^82+372x^83+544x^84+416x^85+363x^86+180x^87+146x^88+44x^89+33x^90+12x^91+6x^92+8x^93+3x^94+7x^96+8x^98+2x^100+1x^104+1x^120 The gray image is a code over GF(2) with n=664, k=12 and d=312. This code was found by Heurico 1.16 in 0.806 seconds.