The generator matrix 1 0 1 1 1 14 1 2 1 8 1 1 4 1 1 1 1 12 1 1 1 1 0 12 6 10 1 1 10 1 1 12 1 14 1 1 1 6 1 1 1 4 1 1 1 1 1 2 4 2 1 1 1 1 1 1 8 2 8 12 1 1 1 1 1 1 1 1 1 1 1 0 1 11 6 13 1 12 1 7 1 10 1 1 8 3 14 5 1 4 15 2 9 1 1 1 1 0 3 1 6 13 1 7 1 5 8 14 1 4 2 8 1 7 9 7 5 10 1 2 6 10 6 12 8 12 0 1 1 1 1 3 7 9 8 3 0 9 5 4 4 3 0 0 12 0 4 4 8 4 4 12 8 12 12 4 0 12 8 8 4 0 12 8 0 8 0 0 0 8 0 0 4 12 4 4 8 4 4 0 4 4 0 4 4 8 8 4 0 12 8 4 4 12 0 12 4 12 4 0 8 0 8 8 12 0 0 8 4 12 4 12 0 0 0 0 8 0 8 8 8 8 0 0 8 0 0 0 0 0 0 8 8 8 8 8 8 0 8 8 8 8 0 8 8 0 0 8 0 8 0 8 0 0 8 8 0 0 0 8 0 8 8 8 0 0 0 0 8 8 0 0 0 0 8 8 8 0 8 8 8 0 0 0 0 0 0 0 8 8 8 0 8 8 8 0 0 0 8 8 0 8 0 8 8 0 0 8 0 8 0 0 0 0 8 0 8 0 8 8 0 8 8 0 8 8 0 8 0 0 8 8 0 8 0 0 0 8 8 8 0 0 8 8 0 8 8 8 0 0 0 0 0 0 8 generates a code of length 71 over Z16 who´s minimum homogenous weight is 66. Homogenous weight enumerator: w(x)=1x^0+110x^66+316x^67+435x^68+532x^69+455x^70+442x^71+599x^72+452x^73+307x^74+236x^75+107x^76+56x^77+20x^78+8x^79+6x^80+4x^83+3x^84+3x^86+2x^87+1x^92+1x^98 The gray image is a code over GF(2) with n=568, k=12 and d=264. This code was found by Heurico 1.16 in 0.516 seconds.