The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 2 1 1 1 1 2 8 2 1 4 1 2 0 8 0 0 2 1 1 2 0 2 0 6 4 6 12 2 0 6 8 14 4 2 4 10 8 2 6 4 4 12 14 14 4 6 8 6 8 8 2 14 12 8 10 10 2 2 2 8 12 2 12 12 14 0 14 12 10 6 2 8 4 4 2 12 14 14 14 6 14 8 2 6 8 2 2 10 2 2 2 2 10 6 8 8 0 0 12 0 4 0 8 0 4 4 0 4 4 12 0 12 8 4 8 12 0 12 8 12 4 4 0 8 12 8 4 0 0 12 12 12 8 12 8 0 12 8 12 0 4 4 12 0 0 4 12 12 0 8 0 4 8 0 12 12 8 8 4 0 4 4 8 8 0 4 0 8 4 12 4 0 0 0 0 12 0 8 8 4 4 4 4 0 12 0 4 4 12 0 8 8 0 4 12 4 8 4 12 12 12 8 0 8 12 8 4 8 8 12 4 4 8 0 4 8 0 12 8 8 12 12 12 0 0 12 4 4 4 0 0 0 4 4 0 0 4 0 12 0 8 8 12 12 12 12 4 4 0 0 0 0 8 8 8 8 0 0 0 8 8 0 8 8 0 0 8 8 8 8 0 0 0 8 8 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 0 8 0 8 8 0 8 8 0 8 0 8 0 0 8 8 8 0 0 8 8 0 8 0 8 8 0 0 8 8 8 8 0 8 generates a code of length 76 over Z16 who´s minimum homogenous weight is 70. Homogenous weight enumerator: w(x)=1x^0+195x^70+401x^72+96x^73+568x^74+416x^75+831x^76+416x^77+534x^78+96x^79+317x^80+154x^82+40x^84+13x^86+9x^88+6x^90+2x^94+1x^124 The gray image is a code over GF(2) with n=608, k=12 and d=280. This code was found by Heurico 1.16 in 1.98 seconds.