The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 8 0 8 8 0 8 8 0 8 8 8 0 8 0 8 0 8 0 8 8 0 0 8 0 8 8 0 0 8 0 8 0 8 8 0 8 0 8 0 0 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 8 0 8 8 8 8 0 8 8 0 8 8 0 0 8 8 0 8 8 8 8 0 0 0 8 8 8 8 0 0 8 8 8 0 0 8 0 8 8 8 8 8 8 0 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 8 8 8 0 0 0 0 8 8 0 8 8 8 8 0 8 0 8 0 8 0 8 8 0 8 0 8 8 0 0 8 0 8 0 0 0 8 8 8 0 8 8 8 8 0 0 8 0 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 8 8 8 8 8 0 8 8 0 8 0 8 8 8 8 0 0 0 8 0 8 0 8 8 0 8 0 8 8 8 0 8 8 0 0 0 8 8 8 0 0 0 8 8 8 8 0 0 0 0 0 0 0 8 8 0 0 0 0 0 0 0 0 0 0 0 0 8 0 8 8 8 0 0 0 0 0 0 0 0 8 8 0 8 8 8 0 8 0 8 0 8 8 0 8 0 8 8 8 8 0 8 0 8 0 8 8 8 8 8 8 8 8 8 0 0 0 8 0 0 0 0 0 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 8 8 0 8 8 0 8 8 0 0 0 0 8 8 8 8 0 0 0 0 8 8 8 8 8 8 0 0 0 0 0 0 8 0 8 0 8 0 8 8 0 8 8 8 8 0 8 0 8 8 8 8 8 0 0 8 0 0 0 0 0 0 0 0 generates a code of length 70 over Z16 who´s minimum homogenous weight is 64. Homogenous weight enumerator: w(x)=1x^0+63x^64+896x^70+63x^76+1x^140 The gray image is a code over GF(2) with n=560, k=10 and d=256. This code was found by Heurico 1.16 in 0.203 seconds.