The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 0 2 0 0 0 0 0 0 2 2 2a^2+2a 2 2a^2+2a 2a^2 2a^2+2 2a^2+2a 2a^2+2a+2 2a+2 2a^2+2a 2a^2 2a^2 2a 2a^2+2a 2a^2+2a+2 2a+2 2a 2a^2 2a^2+2a+2 2a 2a^2+2a+2 2a^2+2 2 2a^2 0 2 2a 2a+2 0 0 2a+2 2a^2+2a+2 2a^2 2 2a^2 2 0 2a^2+2 2a+2 2a^2+2a 2a^2+2 2 2 2a^2+2 2a^2+2 2 0 2 2a^2+2 2a^2 2a+2 2a 2a^2 2a+2 2a^2+2 2 2a^2+2a+2 0 2a^2+2a+2 2 2a^2 2 2a+2 2a^2+2 0 0 0 2 0 0 2 2 2a 2a^2+2 2a^2 2a^2+2a+2 2a^2+2a+2 2a+2 0 2 2a 0 2a+2 2a^2+2a 2a^2+2 2 2a^2+2a+2 2 2 2a^2+2a+2 2a+2 0 2a^2 2a^2+2 2a^2+2a+2 2a^2+2a 2a+2 2a 2a^2 2a^2+2a+2 2a^2+2 0 2a^2+2 2 2a+2 2a^2+2a 2a^2 0 2a^2+2a+2 2a^2+2a 0 2a^2 2a^2+2 2a^2 2a^2 2a^2 2a 2 2a 2a^2+2 2a^2 2a^2+2a+2 2a^2+2a 2a 2 2a+2 0 0 2a^2 2a^2+2 2 0 2a^2 2a^2+2 0 2a+2 0 2a^2+2a+2 2 0 0 0 2 0 2a^2+2 2a^2+2a+2 2a 2 2a+2 2 2 2a^2 2a^2+2a 2a^2+2a 2a^2+2 2a^2+2a+2 2 2 2a^2 2a^2+2 2a^2+2a+2 2a 0 2a 2a^2+2a 2a^2+2a 2a+2 2a 2a 2a+2 2a^2+2 2a 2a^2 2 2 2a+2 2a 2a^2+2 2a 2a+2 2a^2+2a 2a^2 2 0 2a^2+2a+2 2a^2 2a^2+2 2a 0 2 2a^2+2a 2a^2+2 0 2a^2 2a 0 2a 2a+2 2a 2a^2+2a 2a^2+2a+2 2 2a^2+2 2a^2+2 2a^2+2 2a+2 0 2a 2 2a+2 2 2a^2+2a+2 0 0 0 0 0 2 2 2a^2+2a 2a^2+2a 2 2 2a^2+2a+2 2a^2+2a 2 2a^2+2 0 2a+2 2a 2a+2 2a^2+2a+2 2a+2 2a+2 2a^2+2 2a+2 2a+2 2 0 2 2a^2+2a 2 0 0 2 2a 0 2a^2+2a+2 2a^2 2a^2 2a 2a^2 2 0 0 2a^2+2 2a^2+2a 2a 2a^2 2a+2 2a^2+2 2 2a^2+2 2a^2 2a 2a^2+2 2a^2+2a 2a^2+2a 2a 0 2a+2 2a^2 2a^2+2a+2 2a+2 2a+2 2a^2 2a^2 0 2a^2 2a 2a^2+2a+2 2a^2+2a 0 0 2a^2+2 2a^2+2a 2a^2+2a+2 generates a code of length 74 over GR(64,4) who´s minimum homogenous weight is 472. Homogenous weight enumerator: w(x)=1x^0+525x^472+1792x^480+2562x^488+3087x^496+3542x^504+28672x^511+3710x^512+200704x^519+3941x^520+4032x^528+3451x^536+2933x^544+1925x^552+875x^560+280x^568+98x^576+14x^584 The gray image is a code over GF(8) with n=592, k=6 and d=472. This code was found by Heurico 1.16 in 47.5 seconds.