The generator matrix 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2a+2 1 1 1 2a 1 2a 1 2a+2 1 1 0 1 1 1 2 1 1 1 1 1 2a+2 1 2a 1 1 1 1 0 1 1 1 1 1 1 2a+2 2a 1 1 2a+2 2 1 1 1 1 1 0 1 2a 1 1 1 1 2a 1 1 1 1 1 1 2a+2 1 1 1 1 1 0 1 0 0 2a+2 2a 2a+2 2 2 2 1 3a+2 3a+3 3a 3 2a+1 a+2 a+2 3a+2 a+1 1 a+3 3a 1 1 2a+3 0 3a+2 1 3a+2 3a 1 0 2a a+1 1 a+2 a+3 2a+1 a+2 3 1 2 1 2a+3 a+3 1 3a 2a+2 3a 2 2a+2 3a+3 a+1 2a+2 1 1 2a+1 2 2 1 a+1 2a+1 a+3 1 2a+1 1 3a+1 1 2a+1 1 2a+2 1 1 0 a+2 2a+2 2a+1 3a+1 3a+2 2 a 2a+2 3a a 3 0 0 1 0 0 2 2 2a+3 a a+1 2a 2 2a+2 2a+1 3 3a+1 3a 1 2a+2 a+2 3a+1 3 a+2 0 2a 2a+3 1 a+3 a 3a+3 3a+3 a+2 a+3 3a+2 3a+1 0 a+2 a+1 2a+2 2a+1 1 a+3 3a+2 3 a 2a+2 3a+1 1 1 3a 3a+3 2a+1 2a a 3 a+2 1 a+2 1 1 2a+1 a+3 a+1 a+1 3a+3 a+2 3a+3 0 3a+2 3 a+2 3a+2 1 3a+1 0 2a+2 3a+3 2a+3 2a+1 2 1 3a+2 a+2 a a+3 a+3 0 0 0 1 1 3a+2 a+1 a+1 3a+3 a+3 3a+1 3a+1 3a+1 3 a+2 2a+2 2a+3 3a 3 2a+3 a+2 1 2 2a+3 3a+2 2a+1 a+2 2a+2 2a+3 a+3 a 3a+3 2 0 3a+3 3a+1 3a+1 2 a 2a+2 2 2 3a 2a+2 3a+2 a+2 3 a+3 2a+1 3a a+2 0 0 a+2 3a+2 a 2a+1 3 1 a+3 3a 2 3a+3 a 2a+2 0 2a 2a+1 0 2a+3 3a+1 2a+1 3a+3 3a+1 2a+1 2a 3 2a+3 3a+3 3a+3 3a+3 3a+2 a+3 3 2a 3a+1 generates a code of length 86 over GR(16,4) who´s minimum homogenous weight is 242. Homogenous weight enumerator: w(x)=1x^0+984x^242+948x^243+231x^244+3312x^246+2796x^247+573x^248+5112x^250+3528x^251+672x^252+5868x^254+4008x^255+501x^256+6432x^258+4188x^259+618x^260+6048x^262+3864x^263+888x^264+5040x^266+3072x^267+312x^268+2724x^270+1656x^271+210x^272+1056x^274+456x^275+87x^276+288x^278+60x^279+3x^280 The gray image is a code over GF(4) with n=344, k=8 and d=242. This code was found by Heurico 1.16 in 327 seconds.