The generator matrix

 1  0  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 2a+2  1  1  1 2a  1 2a  1 2a+2  1  1  0  1  1  1  2  1  1  1  1  1 2a+2  1 2a  1  1  1  1  0  1  1  1  1  1  1 2a+2 2a  1  1 2a+2  2  1  1  1  1  1  0  1 2a  1  1  1  1 2a  1  1  1  1  1  1 2a+2  1  1  1  1  1
 0  1  0  0 2a+2 2a 2a+2  2  2  2  1 3a+2 3a+3 3a  3 2a+1 a+2 a+2 3a+2 a+1  1 a+3 3a  1  1 2a+3  0 3a+2  1 3a+2 3a  1  0 2a a+1  1 a+2 a+3 2a+1 a+2  3  1  2  1 2a+3 a+3  1 3a 2a+2 3a  2 2a+2 3a+3 a+1 2a+2  1  1 2a+1  2  2  1 a+1 2a+1 a+3  1 2a+1  1 3a+1  1 2a+1  1 2a+2  1  1  0 a+2 2a+2 2a+1 3a+1 3a+2  2  a 2a+2 3a  a  3
 0  0  1  0  0  2  2 2a+3  a a+1 2a  2 2a+2 2a+1  3 3a+1 3a  1 2a+2 a+2 3a+1  3 a+2  0 2a 2a+3  1 a+3  a 3a+3 3a+3 a+2 a+3 3a+2 3a+1  0 a+2 a+1 2a+2 2a+1  1 a+3 3a+2  3  a 2a+2 3a+1  1  1 3a 3a+3 2a+1 2a  a  3 a+2  1 a+2  1  1 2a+1 a+3 a+1 a+1 3a+3 a+2 3a+3  0 3a+2  3 a+2 3a+2  1 3a+1  0 2a+2 3a+3 2a+3 2a+1  2  1 3a+2 a+2  a a+3 a+3
 0  0  0  1  1 3a+2 a+1 a+1 3a+3 a+3 3a+1 3a+1 3a+1  3 a+2 2a+2 2a+3 3a  3 2a+3 a+2  1  2 2a+3 3a+2 2a+1 a+2 2a+2 2a+3 a+3  a 3a+3  2  0 3a+3 3a+1 3a+1  2  a 2a+2  2  2 3a 2a+2 3a+2 a+2  3 a+3 2a+1 3a a+2  0  0 a+2 3a+2  a 2a+1  3  1 a+3 3a  2 3a+3  a 2a+2  0 2a 2a+1  0 2a+3 3a+1 2a+1 3a+3 3a+1 2a+1 2a  3 2a+3 3a+3 3a+3 3a+3 3a+2 a+3  3 2a 3a+1

generates a code of length 86 over GR(16,4) who�s minimum homogenous weight is 242.

Homogenous weight enumerator: w(x)=1x^0+984x^242+948x^243+231x^244+3312x^246+2796x^247+573x^248+5112x^250+3528x^251+672x^252+5868x^254+4008x^255+501x^256+6432x^258+4188x^259+618x^260+6048x^262+3864x^263+888x^264+5040x^266+3072x^267+312x^268+2724x^270+1656x^271+210x^272+1056x^274+456x^275+87x^276+288x^278+60x^279+3x^280

The gray image is a code over GF(4) with n=344, k=8 and d=242.
This code was found by Heurico 1.16 in 327 seconds.