The generator matrix 1 0 0 0 1 1 1 1 1 1 1 1 1 2 1 2a+2 1 1 1 1 2a+2 1 1 1 1 1 1 1 1 1 1 2a 1 1 0 1 1 1 1 1 1 1 2a+2 1 1 1 1 1 2a 0 1 2 1 2a 1 1 1 1 1 1 1 1 1 1 0 2a+2 1 1 0 1 0 0 2 2a+2 2 2a 2a+2 2a+3 a a+2 2a+1 1 3a+2 1 3a+2 a+1 3a+1 a+2 1 3a+1 2 2a+1 1 3a 3a a 3a+3 a 0 1 2a+1 3a+2 2a+2 0 2a+1 a+1 3a 3a+3 2a a+3 2 a+3 2a+3 2a+2 2 a 1 1 3a 1 3a+3 1 3a+1 0 3a+2 a+1 2a+3 a+1 3 a+2 2a+1 1 1 1 2a+1 2a 0 0 1 0 2a+3 2 a 0 2a 3a+3 3a+1 2a+2 2a+2 1 3a+1 a+1 a+3 a+3 a+2 1 3a+2 3a+2 3 2a+1 2 3a+2 3a+3 0 2 3a 1 a+2 3a+3 3 1 3a+1 1 2a+2 2a 2a+3 3a 3 1 3a+2 a+1 3a+1 a+2 2a+1 0 1 3a 2a+2 a 2a+2 3a+3 3a+2 1 a a 2a 1 2 3a 2a+1 3a+2 3a a+3 a+2 0 0 0 1 3a+3 2a+3 3a+1 a a+1 a+3 a+3 3a a+2 1 3 3a 2 2a+1 a+2 a+3 2a+3 2a+2 3a+2 3a+2 1 a 3a+2 2a 2a+2 0 3 3a+3 2a+2 2a 3a+3 a+1 0 3a+3 3a+3 3a+1 3a 2 a a+1 3a+2 a+2 0 3 3a+2 2a 3a+1 1 a+1 0 a a+1 3a 3a 2a 2a+1 2a+3 3 2a+1 a+2 3a 3a 2a 3a generates a code of length 68 over GR(16,4) who´s minimum homogenous weight is 188. Homogenous weight enumerator: w(x)=1x^0+225x^188+420x^189+600x^190+816x^191+1539x^192+1572x^193+1800x^194+1752x^195+2688x^196+2448x^197+2136x^198+2184x^199+3438x^200+3060x^201+3132x^202+2664x^203+3624x^204+3204x^205+2880x^206+2844x^207+3690x^208+3204x^209+2640x^210+2304x^211+2421x^212+2160x^213+1656x^214+936x^215+1518x^216+708x^217+492x^218+288x^219+273x^220+120x^221+24x^222+36x^223+30x^224+9x^228 The gray image is a code over GF(4) with n=272, k=8 and d=188. This code was found by Heurico 1.16 in 19 seconds.