The generator matrix 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 2 2a+2 1 0 1 1 2a+2 1 1 1 2a 1 1 1 1 1 1 2 1 2 2 1 1 1 1 1 1 1 2a 1 1 1 1 2a+2 1 1 1 1 1 2a+2 1 1 1 1 1 1 1 1 0 1 1 0 1 2a 2a 1 0 1 0 0 2 2a+2 1 3a+2 3a+3 1 a 2a+3 2a+3 a+3 a 1 3a+2 a+1 a+1 1 1 3a+2 2a+2 2a+1 2a+3 1 2 2a a+1 1 a+2 3a+1 a a+3 2a+1 a+3 1 2 0 1 2a+3 3a+3 3a+3 2a+2 a a+2 a+3 1 a+1 3a 3a+2 3 2 3 3 a+2 2a+1 2a 1 a+1 a+2 3 0 3a+1 2a+1 a a+2 1 2a+3 a+3 1 3a+1 0 1 0 0 0 1 1 3a+2 3a+3 3 2a+3 2a+1 3a+3 0 2a a 2a a+2 3a+1 3a+1 a a+1 3a+2 1 a+1 1 3a+1 2 a+1 a 2a+3 2a+3 0 3 3a+1 0 a+2 2a+3 1 3a+1 2 1 3a+2 3 a+3 2a 3a 3a 3a+1 3a+2 a+2 1 3a+3 2a+1 a+2 1 3a+2 a+3 2a+2 3a+3 3a+1 2a+1 a+1 a a+3 3a+3 3a+2 0 a+2 2a+1 1 3a+2 1 3a+2 3 1 3a+3 2a 0 0 0 2a+2 0 0 2a+2 2a+2 2a+2 2 2a 2 0 2a 0 2a+2 0 2a 0 2a+2 2a+2 2a 2a+2 2a 2a+2 0 2a+2 2a 2 2a+2 0 2 2a+2 2a+2 0 2a 2 2 2a 0 2a 2a 2 2 2a+2 2 2 2 0 2a+2 2 2 2 2a+2 0 0 2a+2 2a+2 2 2a+2 2 2 2a 0 2a 2a 0 0 2a 0 2 2 2 2a 0 generates a code of length 75 over GR(16,4) who´s minimum homogenous weight is 213. Homogenous weight enumerator: w(x)=1x^0+444x^213+696x^214+252x^215+39x^216+1164x^217+1212x^218+600x^219+63x^220+1428x^221+1464x^222+408x^223+45x^224+1416x^225+1332x^226+372x^227+42x^228+1056x^229+924x^230+336x^231+27x^232+564x^233+684x^234+180x^235+15x^236+492x^237+456x^238+108x^239+15x^240+312x^241+132x^242+48x^243+36x^245+12x^246+6x^248+3x^256 The gray image is a code over GF(4) with n=300, k=7 and d=213. This code was found by Heurico 1.16 in 1.3 seconds.