The generator matrix 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 2 1 1 2a 1 1 1 1 1 0 1 1 2 2a+2 1 1 1 1 1 1 1 1 2a+2 0 1 2a+2 1 2 1 1 2 1 2a+2 1 1 0 1 1 a 3a+3 0 2a+3 a+1 a 1 0 2a+3 a 1 a+1 2 a+1 a+2 2a+3 1 a+1 a 1 0 3a a+3 2a+3 2a+1 1 2 a+3 1 1 2a+3 0 a 2a 3 3a+3 2a+1 2a+2 1 1 3a+3 1 3a 1 a 3a+1 1 3 1 a+1 a+2 0 0 2a+2 0 0 0 2 2 2 2 2 2 2a+2 2a+2 2a 2 2a 2a+2 2a+2 0 2a+2 2a+2 2a 2a+2 2a 0 2a 2 2 2a+2 2a 0 2a+2 2 2a+2 2a+2 0 2a 2 2 2a+2 2a+2 2 2a 0 2a 2a+2 2a 2a 2a+2 2a 2 0 2a 0 0 0 2 0 2 2a+2 0 2 2a+2 2 0 2a 2a+2 0 2a+2 0 0 2a 2a 2 2 2a+2 2a+2 0 2a 2a 0 2a+2 2a 0 2a+2 2a 0 2 0 2a 2 2a 2 2a+2 2 2a 2a 0 2 2a+2 2a 2a+2 2a 2 2 2 2 0 0 0 0 2a+2 2a+2 2 2a+2 2a 0 2a+2 2 2 2a 2 2a 2a 2 2a+2 2a+2 0 2a+2 2a+2 2 0 2a+2 0 2a+2 2a+2 0 2a+2 2a 2 2a 2a 2a+2 0 0 2 2 0 2a 2a+2 2 2a 2a 0 0 2a 2a 2a+2 2a 0 2a+2 generates a code of length 54 over GR(16,4) who´s minimum homogenous weight is 148. Homogenous weight enumerator: w(x)=1x^0+318x^148+60x^149+192x^151+855x^152+384x^153+384x^155+1608x^156+504x^157+576x^159+2319x^160+672x^161+960x^163+2247x^164+780x^165+768x^167+1992x^168+576x^169+192x^171+678x^172+96x^173+96x^176+60x^180+24x^184+21x^188+6x^192+9x^196+3x^200+3x^204 The gray image is a code over GF(4) with n=216, k=7 and d=148. This code was found by Heurico 1.16 in 1.21 seconds.