The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 2 2 1 1 0 2 0 0 0 0 0 0 0 0 0 2a 2a+2 2a 2 2a 2a+2 2a 2 0 2a 0 2a 2 2 2a+2 2a 2a 0 2a+2 2 2a+2 2a 2 2a 2a 2a+2 2a 2a+2 2 2a 0 0 2a+2 2a 0 2a+2 2a 2a 2 0 0 2a 0 2 2 2a+2 2 0 2 2 2 2 2a 0 2 2a+2 2a 2a 2a+2 0 2 2a 0 2 0 2 0 2 2 0 2a 0 0 0 2 0 0 0 0 2 2 2 2a 0 2a 2a 2a 2a+2 0 2a+2 2a+2 2 2 2a 0 2 0 2a 2a 2 2 2a+2 0 2a+2 2a+2 2a 2 0 0 0 2 2 2a 0 2 2 2a 2a 2 2a+2 2a+2 2a+2 2a 0 0 2a+2 2a+2 2a+2 2a+2 2 0 2a 2 0 2a+2 2a+2 2a+2 0 2a+2 0 2a 2 2 2 2 0 2a+2 2 2a 2a 0 2a+2 2 0 0 0 0 0 2 0 0 2 2a+2 2a 2a 2a 0 2a+2 2a 2a 2 2a+2 2a 2a 0 2a+2 2 2a+2 2 2a 2 0 2 2a 0 2 2 2 0 0 2 2a+2 2a+2 2a 2a 2 0 0 2a+2 0 2 2a+2 0 2a+2 2a+2 2a 2 2 2a+2 2a+2 2 2a 2a+2 0 0 0 0 2 2a+2 0 2a+2 2 2 0 0 2 2 2 2 2a 2a 2a 2a 2a+2 0 2 0 0 0 0 0 0 2 0 2a+2 0 2 2a 2a+2 2a+2 2 0 0 2a 0 2a 0 2 2a 2 0 2a 2 2a 2 2a 2 0 2a 2a+2 2a+2 2a+2 2 2a 2a 2 0 2a+2 2 2a 2 2a 2a+2 2a+2 2 0 2a+2 2a 2a+2 0 2 2a 2a 0 2a 2a 2 0 2 2a+2 2 2a 0 2 0 2a 2a 2a+2 0 0 0 0 2 2a 2a+2 2 2 2a+2 0 2 2a 0 0 0 0 0 2 2 2 2a+2 2 2 2a 2 0 2a 2a+2 2a+2 2a 2a 2a 2a 2a+2 2 2a 2a 2a 2 2a 2a 2a 2a+2 0 2a+2 0 2a+2 0 2 0 0 0 2 2 0 2a+2 2a 2 2a 2a 0 0 2a 2 2a+2 0 2a 0 2a+2 2a+2 2a+2 0 0 2a+2 2a 2a 2a+2 0 2a+2 2 2a 2a 0 2a+2 2a 2a 0 2a+2 2a 2a 2a+2 2a 2a 2a 0 generates a code of length 83 over GR(16,4) who´s minimum homogenous weight is 224. Homogenous weight enumerator: w(x)=1x^0+66x^224+285x^228+411x^232+60x^235+396x^236+420x^239+399x^240+1560x^243+414x^244+3720x^247+384x^248+4332x^251+297x^252+2196x^255+273x^256+267x^260+294x^264+189x^268+141x^272+96x^276+72x^280+54x^284+36x^288+15x^292+3x^296+3x^308 The gray image is a code over GF(4) with n=332, k=7 and d=224. This code was found by Heurico 1.16 in 3.93 seconds.