The generator matrix 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2 2a+2 1 1 1 1 0 1 1 a a+1 0 2a+3 a a+1 1 0 a 2a+3 a+1 1 2 2a+3 a+2 a+3 1 2 1 a+2 a+3 1 2 2a+1 1 a+2 3a+3 2a+3 2a+1 3 0 a 2a+2 a+3 2a 3a 3a 2a+3 3a 3a a+2 3a 1 3a+2 2a+1 2a+1 2a+1 a 1 a+2 3a+3 1 1 1 3a+3 2a+1 3 a 0 0 2a+2 0 2 0 2 2a 2a 2a 2a 2 2a+2 2a+2 0 2a+2 0 2a+2 0 2 2 2a 2a 2 2a+2 2a 2 2a 2a+2 2a 0 2a+2 2a+2 2a 2a 0 2a 2 2a+2 2a+2 2 0 2 0 2 2a 0 2 2a 2a 2 0 2a 2a+2 2a 2 2 2a+2 2a+2 2a 2 0 0 0 2 2a 2a 0 2a 2 2 0 2 2a 2 2 0 0 2 2 2 0 0 2 2 2 2a 2a 0 2a 2a 2a 2a+2 2 2 0 2a+2 2a+2 2a+2 2a+2 0 2 0 2a+2 2a+2 2a 2a+2 2a 2a+2 2 2a 0 2 2a+2 2a 2a+2 0 2a+2 0 2a 0 2 generates a code of length 61 over GR(16,4) who´s minimum homogenous weight is 176. Homogenous weight enumerator: w(x)=1x^0+1014x^176+1164x^180+690x^184+564x^188+393x^192+240x^196+18x^200+12x^208 The gray image is a code over GF(4) with n=244, k=6 and d=176. This code was found by Heurico 1.16 in 1.07 seconds.