The generator matrix 1 0 1 1 1 1 1 1 1 0 1 1 1 1 2 1 1 1 1 2 1 1 1 1 0 1 1 1 1 2a 1 2a 1 1 1 1 1 1 1 2 1 1 1 1 2a 1 1 1 1 1 1 1 1 1 1 1 1 0 2 2a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2a+2 2a+2 2a+2 2a+2 1 1 1 1 2 2 1 2 1 1 0 1 1 a a+1 0 2a+3 a+1 a 1 a+3 2 2a+3 a+2 1 2 1 a+2 a+3 1 0 2a+3 a a+1 1 2 2a+1 a+3 a+2 1 2a+1 1 2a 3a 3a+1 2a 3a 3a+1 2a+1 1 2a 1 3a 3a+1 1 2a+3 2a+1 1 0 2 2a a a+2 3a a+1 a+3 3a+1 1 1 1 2a+2 2a+2 2a+2 2a+2 3 3 3 3 3a+2 3a+2 3a+2 3a+2 3a+3 3a+3 3a+3 3a+3 1 1 1 1 0 0 2 2 2 2a 2a+3 0 2a+1 a 0 0 2a+2 2a 2 2 0 2a+2 0 2a 2a 2a+2 2a 2 2 2a 2 2a+2 0 2a+2 2a 2 2 2a 2 2 2a+2 2a+2 2a 2a+2 0 0 2a+2 0 0 0 2a+2 2 2a 2a 2 0 2 2a+2 2 2a+2 2 2a 2a+2 0 2a 2a+2 0 2a 0 2 2a 2a+2 0 2a 2a+2 2a 2 0 0 2 2a 2a+2 2a+2 2a 2 0 2a+2 2a 2 0 2a+2 2a 2 0 0 2 2a+2 2a 2 2a 0 2 2a 0 generates a code of length 90 over GR(16,4) who´s minimum homogenous weight is 265. Homogenous weight enumerator: w(x)=1x^0+168x^265+36x^266+84x^267+9x^268+144x^269+120x^270+72x^271+24x^272+216x^273+36x^274+36x^275+21x^276+48x^277+3x^280+6x^284 The gray image is a code over GF(4) with n=360, k=5 and d=265. This code was found by Heurico 1.16 in 0.14 seconds.