The generator matrix 1 0 1 1 1 1 1 1 1 0 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 0 2 1 1 2a 1 1 2a 1 1 1 1 1 1 2a 2a 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2a+2 2a+2 1 0 1 1 a a+1 0 2a+3 a+1 a 1 a+3 2 2a+3 a+2 1 2 1 a+2 a+3 1 0 2 2a+3 2a+1 2a+1 a+2 3a 3a a+1 a+3 1 1 2a 3a+1 1 2a 3a+1 1 2a+1 a 2a 1 3a 3a+1 1 1 1 1 0 2 2a 2a+3 1 2a+1 a a+2 3a a+1 a+3 3a+1 2a+2 2a+2 2a+2 2a+2 3 3 3 3 3a+2 3a+2 3a+2 3a+2 3a+3 3a+3 3a+3 3a+3 0 0 2 1 1 2a+3 0 0 2a+2 2a 2 2 0 2a+2 0 2a 2a 2a+2 2a 2 2 2a 2 2a+2 0 2a+2 2a 2 2 2a+2 0 2a 0 2 2a 2a+2 2a+2 0 2a+2 0 2 0 2 2a 2a 2a+2 2 0 2a 2a+2 2a+2 0 2 2a 2a+2 0 2a 2a+2 2a 2 2 0 2a+2 0 2 2a 2a+2 2a 2 0 0 2 2a 2a+2 2a+2 2a 2 0 2a+2 2a 2 0 2 2a 2a+2 2a+2 2a 0 generates a code of length 82 over GR(16,4) who´s minimum homogenous weight is 241. Homogenous weight enumerator: w(x)=1x^0+144x^241+36x^242+72x^243+6x^244+144x^245+120x^246+108x^247+27x^248+288x^249+36x^250+27x^252+12x^255+3x^260 The gray image is a code over GF(4) with n=328, k=5 and d=241. This code was found by Heurico 1.16 in 0.094 seconds.